Tensor-Based Binary Graph Encoding for Variational Quantum Classifiers
Published in IEEE QCNC, 2025
Shiwen An and Konstantinos Slavakis,
Quantum computing has been a prominent research area for decades, inspiring transformative fields such as quantum simulation, quantum teleportation, and quantum machine learning (QML), which are undergoing rapid development. Within QML, hybrid classical-quantum algorithms like Quantum Neural Networks (QNNs) and Variational Quantum Classifiers (VQCs) have shown promise in leveraging quantum circuits and classical optimizers to classify classical data efficiently.
Simultaneously, classical machine learning has made significant strides in graph classification, employing Graph Neural Networks (GNNs) to analyze systems ranging from large-scale structures like the Large Hadron Collider to molecular and biological systems like proteins and DNA. Combining the advancements in quantum computing and graph classification presents a unique opportunity to develop quantum algorithms capable of extracting features from graphs and performing their classification effectively.
In this paper, we propose a novel quantum encoding framework for graph classification using VQCs. Unlike existing approaches such as PCA-VQC, which rely on dimensionality reduction techniques like Principal Component Analysis (PCA) and may lead to information loss, our method preserves the integrity of graph data. Furthermore, our encoding approach is optimized for Noise-Intermediate Scale Quantum (NISQ) devices, requiring a limited number of qubits while achieving comparable or superior classification performance to PCA-VQC. By constructing slightly more complex circuits tailored for graph encoding, we demonstrate that VQCs can effectively classify graphs within the constraints of current quantum hardware.
Recommended citation: Overnight Stock Movement Prediction with Contextualized Embedding Incorporating News and Stock
Recommended citation: Tensor-Based Binary Graph Encoding for Variational Quantum Classifiers
Download Paper