Utilize the Docker container

4 minute read

Published:

CUDA Docker Container Setup and Usage Guide This tutorial covers how to build, run, attach, and detach a CUDA-enabled Docker container supporting three NVIDIA A6000 GPUs.

1. Install NVIDIA Docker Support

1.1 Install Docker (if not installed)

curl -fsSL https://get.docker.com | sh
sudo systemctl start docker
sudo systemctl enable docker

1.2 Install NVIDIA Container Toolkit

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && \
sudo curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg && \
echo "deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://nvidia.github.io/libnvidia-container/$distribution stable" | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list && \
sudo apt-get update

sudo apt-get install -y nvidia-container-toolkit

Restart Docker:

sudo systemctl restart docker

Verify GPU support:

docker run --rm --gpus all nvidia/cuda:12.2.0-base nvidia-smi

If it shows available GPUs, the setup is correct.


2. Build a CUDA-Enabled Docker Image

Create a file named Dockerfile:

# Base image with CUDA 12.2 and cuDNN 8
FROM nvidia/cuda:12.2.0-devel-ubuntu22.04

# Set environment variables
ENV DEBIAN_FRONTEND=noninteractive
ENV PATH="/usr/local/cuda/bin:${PATH}"

# Install necessary packages
RUN apt-get update && apt-get install -y \
    git wget curl build-essential \
    python3 python3-pip python3-dev && \
    rm -rf /var/lib/apt/lists/*

# Install PyTorch with CUDA support
RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

# Set working directory
WORKDIR /workspace

CMD ["/bin/bash"]

2.1 Build the Docker Image

docker build -t cuda-container .

3. Run the Container with GPU Support

3.1 Run the Container Using 3 NVIDIA A6000 GPUs

docker run --rm --gpus '"device=0,1,2"' -it cuda-container bash
  • --gpus '"device=0,1,2"' → Allocates three A6000 GPUs.
  • -it → Runs interactively.
  • --rm → Deletes the container when exited.

3.2 Run a Persistent Container

If you want a reusable container:

docker run --gpus '"device=0,1,2"' --name cuda_env -it cuda-container bash

To restart later:

docker start -ai cuda_env

4. Attach & Detach from Running Containers

4.1 Detach from a Running Container

Inside the container, press:

Ctrl + P, Ctrl + Q

This keeps the container running in the background.

4.2 List Running Containers

docker ps

4.3 Reattach to a Running Container

Find the container ID using docker ps, then run:

docker attach <container_id>

Or if you named your container:

docker attach cuda_env

5. Stop & Remove Containers

5.1 Stop a Running Container

docker stop <container_id>

or

docker stop cuda_env

5.2 Remove a Stopped Container

docker rm <container_id>

This tutorial provides a complete workflow for building, running, detaching, and reattaching CUDA containers.

🚀 It is also possible to store the things created in the workspace in the disk space

By default, files created inside a Docker container are lost when the container is stopped unless you use volumes or bind mounts to store them on the host machine. Here’s how to ensure file persistence.


Docker volumes store data persistently across container restarts.

1.1 Create a Volume

docker volume create my_data

1.2 Run a Container with the Volume Mounted

docker run --gpus '"device=0,1,2"' -it --mount source=my_data,target=/workspace cuda-container bash
  • Any file created inside /workspace will be saved in my_data and accessible even if the container is stopped or removed.

1.3 Reuse the Volume in a New Container

docker run --gpus '"device=0,1,2"' -it --mount source=my_data,target=/workspace cuda-container bash

The files remain intact.


Option 2: Use a Bind Mount (Maps a Folder from Host)

This method links a host directory to a container directory.

2.1 Create a Directory on the Host

mkdir -p ~/cuda_workspace

2.2 Run a Container with a Bind Mount

docker run --gpus '"device=0,1,2"' -it -v ~/cuda_workspace:/workspace cuda-container bash
  • Files inside /workspace in the container are actually stored in ~/cuda_workspace on the host.
  • Even if the container is removed, files remain in ~/cuda_workspace.

Option 3: Commit Changes to a New Image

If you want to save the state of a container, you can create a new Docker image from it.

3.1 Find the Running Container ID

docker ps

3.2 Commit the Container to a New Image

docker commit <container_id> cuda-container-saved

3.3 Start a New Container from the Saved Image

docker run --gpus '"device=0,1,2"' -it cuda-container-saved bash

Which Method Should You Use?

| Use Case | Method | |———-|——–| | Persist files across container runs | Volumes (--mount) ✅ | | Access files directly from the host | Bind mounts (-v) ✅ | | Save entire container state | Commit to a new image |

Recommended: Use Volumes (--mount) for best performance and flexibility.